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ABSTRACT

An exact two-dimensional solution is derived for determining the fluid flow
rates into a borehole and to the surface from which the borehole was drilled.
The solution is for a single fluid phase in a disturbed rock zone (DRZ) that
surrounds the borehole with a radius specified to be either finite or
infinite. The solution is restricted to constant homogeneous rock and fluid
properties in the DRZ, and pressures in the borehole and at the surface of
the drift that are maintained constant at ambient conditions. A major
objective of the work is to provide a benchmark for more detailed numerical
calculations that include variable physical properties and an arbitrary DRZ
geometry. However, in addition, this work extends previous exact solutions
for one-dimensional flow by: (1) allowing for a DRZ of finite but arbitrary
extent, (2) accounting for depressurization due to mining the drift before
drilling the borehole, and (3) accounting for two-dimensional variations of
the fluid pressure caused by simultaneous fluid flow to the drift and to the
borehole.

An exact solution is also presented for the ratio of the borehole fluid
inflow rates determined by the two- and one-dimensional models. Sample

calculations show that for some cases, two-dimensional effects dominate. In
these cases the dominate flow path can be to the surface and not the
borehole, even for borehole depths much greater than the borehole radius.
This feature may be very important when interpreting borehole fluid
collection data to determine physical properties of the DRZ.
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1.0 INTRODUCTION

A mathematical model is needed to estimate rock properties from data on

fluid flow rates into boreholes. One model that has been used for halite at

the Waste Isolation Pilot Plant (WIPP) assumes that the rock is a brine-

saturated porous medium of infinite extent perpendicular to the axis of the

borehole (Nowak and McTigue, 1987; Nowak et al., 1988). A schematic diagram

of this model is given in Figure 1. In this one-dimensional infinite-radius

model, a borehole is drilled into undisturbed rock that contains fluid under

constant pressure. In the borehole, the pressure is held constant at ambient

conditions, which is much lower than the fluid pressure in undisturbed rock.

Brine flow into the borehole is a result of brine and rock expansion due to

depressurization caused by the borehole being at this lower pressure. Darcy

flow is used to model brine flow in the porous medium. A major benefit of

using this model is that an exact solution is available for determining the

brine flow rate into the borehole for a constant initial pressure in the

region (Crank, 1975, p. 87). Furthermore, a direct method has been developed

to use the exact solution for data interpretation to estimate rock properties

(Nowak and McTigue, 1987; McTigue and Nowak, 1987; Nowak et al., 1988; Finley

et al. , 1992;

However,

to remove the

Webb, 1992).

the one-dimensional infinite-radius model needs to be extended

following four limitations:

. The permeable interconnected pore space cannot be finite and must be
infinite extent.

. The initial vertical pressure profile before drilling the borehole
cannot be a function of depth.

. There is no upwards flow to the drift.

of

. There is no upwards flow to the borehole or drift from depths greater
than the depth of the borehole.

These points are summarized in Table 1. The first limitation, assuming

the medium is permeable for an infinite distance away from the borehole,

conflicts with the observed apparent impermeability of halite. However, halite

cannot’be completely impermeable because brine inflow to boreholes is observed.

These two conflicting observations can be resolved by postulating that drilling

induces disruptions in the halite that result in the local formation of a

permeable interconnected pore space. In this work, the localized region around

the borehole that allows for flow will be called a disturbed rock zone (DRZ).

1
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Table 1. Comparison of Model Features

Model Arbitrary Arbitrary Initial

Outer DRZ Vertical Pressure

Radius

One-Dimensional

Infinite-Radius

(Figure 1)

One-Dimensional

Finite-Radius

(Figure 2)

Two-Dimensional

Finite-Radius

(Figure 3)

Two-Dimensional

Infinite-Radius

(Figure 4)

No No

Yes

Yes

No Yes

No

Yes

Vertical Flow Vertical Flow

To Drift Up From Below

Borehole Depth

No No

No

Yes

No

No

Yes No



Beyond the DRZ, the rock is assumed to be impermeable. In contrast to the

infinite-radius model, a finite-radius model (shown in Figure 2) more

accurately represents the concept of a finite DRZ. The finite-radius model

provides much more flexibility because it can be made to approack~ an

infinite-radius DRZ model by assigning a very large value to the outer radius

of the DRZ. Although the finite-radius model is more versatile, it

introduces an additional unknown because the extent of the DRZ is not

determined by the model, but must be specified independently.

The second limitation of the one-dimensional infinite-radius model is

the inability to account for pressures that vary with depth prior to drilling

the borehole. Because boreholes are drilled from mined drifts, there are

actually two steps involved in analyzing borehole brine inflow rates. The

first step of mining the drift begins the depressurization process by

allowing brine to escape through the floor of the drift. This fluid loss

lowers the pressure adjacent to the floor of the drift relative to that at

greater depths below the drift. In the second step, the borehole is drilled

into this partially depressurized region, and the initial condition for the

second step is the depth-dependent pressure profile created in the region by

mining the drift. In this work, the term “initial condition” refers to the

state just prior to drilling the borehole. The time to drill the borehole is

assumed to be negligible compared to the time between completing the borehole

and measuring the brine inflow rate.

To remove the second limitation, the one-dimensional finite-radius model

must be extended to a two-dimensional model, as shown in Figure 3. A two-

dimensional finite-radius model can account for pressure variations with

depth and radial distance from the borehole. Thus, it is possible to include

a depth-dependent pressure profile formed by mining the drift. This vertical

pressure profile can be used as the initial condition for determining the

flow rate to a borehole. As given in Table 1, no such depth-dependent

initial pressure profile can be included in-either of the one-dimensional

models.

The two-dimensional finite-radius model does not constrain the flow to

only the borehole and thus also addresses the third limitation. Brine loss

to the drift both prior to and after drilling the borehole is included in the

two-dimensional model. By including the process of brine escaping into the

4
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drift, the brine flow rate into the borehole is depth-dependent, even if

mining the drift resulted in no significant depressurization prior to

drilling the borehole. As shown in the sample calculations given in Sections

8.1 and 8.2, two-dimensional effects can be important even if the ratio of

the borehole length to the borehole radius is much greater than 1. In the

sample calculations, this ratio L/a, is equal to 60.

In the limit as the DRZ extends radially to infinity, the two-

dimensional finite-radius model reduces to the two-dimensional infinite-

radius model shown in Figure 4. As given in Table 1, because the two-

dimensional infinite-radius model is restricted to a DRZ that is radially

infinite, this model is less versatile than the two-dimensional finite-radius

model . However, this limiting case may be appropriate if the borehole is

drilled in the middle of a very large drift.

Although the two-dimensional finite-radius model derived in this work

addresses the first three limitations given in Table 1, the model does not

address the fourth limitation of fluid moving up from below the depth of the

borehole. By this mechanism, fluid enters the borehole through the bottom

surface of the borehole and through the cylindrical surface of the borehole.

Further work is planned to incorporate this upward flow into the two-

dimensional model.

The two-dimensional models can be used for any cylindrical hole drilled

perpendicular to a flat surface, such as the floor of a drift. The surface

orientation of the models is arbitrary; the models can be applied to vertical

boreholes such as those in Room D at the WIPP, to horizontal boreholes such

as in Room L4, and even to Room Q. However, for convenience, the models are

discussed for a borehole drilled vertically down from the floor of a drift as

shown in Figure 3.

The problem of two-dimensional Darcy flow caused by depressurization of

a single-phase fluid in a porous medium is governed by the Diffusion Equation

(Freeze and Cherry, 1979). Solutions to the Diffusion Equation for many

different geometries and boundary conditions are well known (Carslaw and

Jaeger, 1959; Crank, 1975). In particular, solutions applicable to problems

similar to those in this work have been reported (Nicholson, 1921; Goldstein,

1932) . However, no solution was found in standard texts on diffusive

7
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transport (Carslaw and Jaeger, 1959; Crank, 1975), for two-dimensional flow

to a borehole with the initial condition of an arbitrary depth-dependent

pressure in the medium.

Therefore, in Section 2.0 of this report, a detailed derivation of a

two-dimensional finite-radius solution is presented for an arbitrary depth-

dependent initial pressure at the time the borehole is drilled. In Section

2.1, the solution is determined explicitly for the special case of constant

initial pressure in the DRZ. In Section 2.2 the solution is given for the

second special case of a depth-dependent initial pressure that results from

mining the drift an arbitrary amount of time before drilling the borehole.

The model for the limiting case of a two-dimensional DRZ extending radially

to infinity is derived in Section 3.0 for an arbitrary depth-dependent

pressure profile. Solutions for the special cases of a constant initial

pressure and an initial pressure resulting from mining a drift are derived in

Sections 3.1 and 3.2, respectively. The solutions given in Sections 2.1 and

3.1 form the basis for deriving solutions to the one-dimensional models.

The one-dimensional finite-radius solution is developed in Section 4.0

from the two-dimensional finite-radius solution. For comparison, the

limiting case of flow in a one-dimensional infinite-radius domain is given in

Section 5.0. In Section 6.0, the results of Sections 2.1, 2.2, 3.1, and 3.2

are used to derive expressions for the flow rate into the borehole and to the

drift for two-dimensional flow. Also in Section 6.0, the results of Sections

4.0 and 5.0 for one-dimensional flows are used to obtain expressions for the

brine inflow rates for the finite-radius and the infinite-radius one-

dimensional models, respectively. From the analyses for two- and one-

dimensional flow, a quantitative conditional test is developed for

determining when two-dimensional effects are important. This test provides a

very simple but exact expression for the ratio of flow rates to the borehole

for the two- and one-dimensional models. Using this test, it is shown that

for the same DRZ outer radius, one-dimensional models always overestimate the

brine inflow rate when compared to two-dimensional models. In Section 7.0

expressions are derived for the cumulative fluid volume produced in the

borehole and into the drift. In Section 8.0, general features of the sample

c-alculations are discussed for the range of parameters typically expected at

the WIPP. Due to the large number of parameters required to model brine

inflow, the concept of a penetration depth is introduced to provide a single

9



scaling parameter. In Sections 8.1 and 8.2, the penetration depth is shown

to provide a measure of the extent to which depressurization has occurred in

the DRZ. Two-dimensional contour plots of the pressure are discussed in

Section 8.1. In Section 8.2 calculation results are compared for the four

models given in Table 1. It is shown that in some cases, the dominant flow

path can be to the drift floor and not into the borehole. The effects of

mining the drift a significant amount of time before drilling the borehole

are also shown in Section 8.2. Important conclusions of this work are given

in Section 9.0.

10



2.0 PRESSURE PROFILE FOR THE TWO-DIMENSIONAL FINITE-RADIUS MODEL

The governing equation for fluid pressure minus ambient pressure in a

saturated, homogeneous, isotropic porous medium with constant permeability

and porosity, for a slightly compressible liquid with constant viscosity, is

given by the Diffusion Equation (Freeze and Cherry, 1979)

(2-1)

where

P ==Pf - Pa (Pa)

‘f = fluid pressure in pore space (Pa)

Pa = ambient pressure adjacent to porous medium, assumed constant (Pa)

t= time (s)

-2V2 = Laplacian operator (m )

a = diffusion coefficient (m2/s) .

The diffusion coefficient is given by (Webb, 1992, p. 13)

k
a=

[
P #cf + Cr1

where

k= rock permeability (m2)

p = fluid viscosity (Pa~s)

Cf
= fluid compressibility (Pa-l)

-1
Cr - rock compressibility (Pa )

@ = porosity.

(2-2)

In this work, a is assumed constant, and gravitational effects are

neglected. For a vertical borehole drilled from a mined horizontal surface,

11



the fluid pressure is a function of radial distance, depth, and time. Thus ,

in this case, Equation (2-1) reduces to

a2p +lap+a2p 1 ap—— —

dr2
r dr

az2
“;%

(2-3)

where r is the radial distance measured from the axis of the borehole, and z

is the vertical distance measured downward from the floor of the drift, as

shown in Figure 3.

In this analysis, the size of the region that is disturbed by drilling

is arbitrary but finite. Thus, to a first approximation, this region will be

uniform in physical properties and will extend from the borehole out to a

radius b for the entire length of the borehole, as shown in Figure 3. It is

assumed that there is no fluid flow beyond this DRZ. Ambient prassure

variations are

porous medium,

held constant.

Equation (2-3)

assumed to be small compared to the pressure changes in the

and thus the pressure at z = O, the surface of the medium, is

For these conditions, the initial and boundary conditions on

are given by

P= PO(r,z) att=O, OSzSL,a ~r<b

P -o at t> O, 0< z < L, r = a

ap o
z-

at t > 0, 0 s z s L, r -b

P-o at t > 0, z -O, a<r<b

ap o
G-

at t > 0, z = L, a< r~b

(2-4)

(2-5)

(2-6)

(2-7)

(2-8)

where L - length of the borehole (m)

a - borehole radius which is equal to DRZ inner radius (m)

12



b - outer radius of DRZ (m)

‘o
- fluid pressure minus the ambient pressure at time zero (Pa).

P. can be a function of depth because the borehole may be drilled after

considerable changes in pressure occur after mining the drift. For

generality, the following analysis in this section allows for P. to be an

arbitrary function of radial distance and depth, but for the applications

used in this work, P. will not vary with radial distance.

Equation (2-3) may be solved by the method of Separation of Variables by

assuming P(r,z,t) is given by

P(r,z,t) - RAT (2-9)

where R is a function only of r, Z is a function only of z, and T is a

function only of t. Substituting Equation (2-9) into Equation (2-3) and

dividing by P results in

ld2R+l dR 1 dT 1 d2Z - ~2—— . . —— .

R dr2
rR dr “==-2

dz2

where -A2 has been chosen as the separation constant.

reduces to the zeroth-order Bessel’s Equation given by

Stegun, 1970, p. 358, Eq. 9.1.1; Watson, 1958)

d2R +ldR+A2R. .. . ..— -0-- for ‘aSr<b .
dr2

r dr.

(2-lo)

The equation for R

(Abramowitz and

(2-11)

From Equations (2-5) and (2-6), the boundary conditions on R are given by

13



R=O atr=a

dRo
z= atr=b.

The general solution to Equation (2-11) is given by

R-= AJo(~r) + Byo(~r)

where Jo = zeroth-order Bessel function of the first kind

‘o - zeroth-order Bessel function of the second kind

A“ constant

B = constant.

From Equation (2-12),

o - AJo(,4a) + BYo(Aa) .

Using the identities (Abramowitz and Stegun, 1970, p. 361, Eq. 9.1.28)

dJo(Ar)

dr
= - AJ1(Ar)

and

dYo(Ar)

dr =
- AY1(Ar) ,

Equation (2-13) reduces to

o=- AAJ@b) - BAY1(Ab)

(2-12)

(2-13)

(2-14)

(2-15)

(2-16)

(2-17)

(2-18)
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where J1 and Y1 are the first-order Bessel functions of the first and second

kind, respectively.

From Equations (2-15) and (2-18), R is determined within a

multiplicative constant and is given by

Ri = YO(Aia)JO(Air) - JO(Aia)YO(Air) i = 1,2,3, ...

where Ai is the i-th eigenvalue given by the roots of the equation

o= yo(~ia)J1(~ib) - Y1(~ib)Jo(~ia) i = 1,2,3, ...

(2-19)

(2-20)

An efficient numerical method for determining the eigenvalues Ji is given in

Appendix A.

Equation (2-10) may be separated further to give

1 d2Z ~2+1 dT_.— .
z - V2

dz2 ~
CYTdt

(2-21)

.
where -qz has been chosen as the separation constant. The equation for Z

reduces to

d2Z
+ r12z= o

dz2
(2-22)

subject to the boundary conditions obtained from Equations (2-7) and (2-8).

Thus , the boundary conditions on Z are given by

15



z-o at z-O (2-23)

dZ o
z-

at z-L. (2-24)

The solution to Equations (2-22) to (2-24) is given within a multiplicative

constant by

‘j = sin[q z]
j

j = 1,2,3, ...

where the eigenvalues q
-1

are given by

.G?E&
“j j = 1,2,3, ...

2L

From Equation (2-21), T is governed by

and therefore given within a multiplicative constant by

T- exp[- at(~~ +q2)] .
j

(2-25)

(2-26)

(2-27)

(2-28)

P may be determined by combining Equations (2-19), (2-25), and (2-28) to give

(2-29)
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The constants C..
lJ are determined from Equation (2-4) at t - 0, which is given

by

PO(r,z) -
LL cijRi(r)zj(z) “
j-l i-1

The functions Ri and Z have the following orthogonality properties:
j

b

J
rRi(r)Rl(r) dr ==O

a

L

J

Z (Z)Za(Z) dz - 0
j

fori+l

forj~u .

(2-30)

(2-31)

(2-32)

o

With these orthogonality properties, C
ij

may be determined by multiplying

both sides of Equation (2-30) by rRIZa and integrating over r from a to b,

and over z from O to L. This results in

Lb

H
rRi(r)Zj(z)Po(r,z) drdz

c-
Oa

ij
L b

IZ2(Z) dz
j

1

rR~(r) dr

o a

(2-33)

For the applications in this work, P. is only a function of z, and therefore

Equation (2-33) simplifies”to
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bL

f

PO(Z)Z (Z) dz
j

(

rRi(r) dr

o
Cij - L

z;(z) dz

a

b

rR~(r) dr

(2-34)

o a

Three of the integrals in Equation (2-34) are independent of P. and thus can

be determined regardless of the initial depth-dependent pressure profile.

The square of the norm of Z. is given by
J

L

0

Using the identities (Abramowitz and Stegun, 1970, p. 361, Eq. 9.1.30)

J
XJO(X) dx = XJ1(X)

J
XYO(X) dx = XY1(X) ,

the first moment of Ri is given by

(2-35)

(2-36)

(2-37)

18



b

J

b

[
rRi(r) dr - ~ YO(Aia)J1(Aib) - JO(Aia)Y1(Aib)

i 1

a

[ 1
- ~ yO(~ia)J1(~ia) - JO(~ia)yl(~ia) .

i

(2-38)

The first term in square brackets on the right-hand-side of Equation (2-38)

is zero from Equation (2-20). Therefore,

b

f

rRi(r) dr - - ~
[ 1
Yo(Aia)J1(Aia) - Jo(Aia)Yl(Aia) .

i

(2-39)

a

Because the Wronskian of the Bessel functions is given by (Abramowitz and

Stegun, 1970, p. 360, Eq. 9.1.16)

yo(x)J1(x) - JO(X)Y1(X) - & ,

Equation (2-39) reduces to

b

J

2
rRi(r) dr - - ~ .

lrA
i

a

(2-40)

(2-41)

Using an identity for the integral of a product of Bessel functions

(Abramowitz and Stegun, 1970, p. 484, Eq. 11.3.31),
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1XWO(X)QO(X) dx
1

(Q -JorY)
=E#[QO(X)WO(X) + Q1(X)W1(X) ~w =JorY) ‘

(2-42)

we have that

b

f [

2 [YO(Aia)JO(Aib)rR~(r) dr - } - Jo(Aia)Yo(Aib)12

a

+ [yo(~ia)J1(~ib) - Jo(~ia)y1(Aib)121 (2-43)

2

[ 1
2

- > yo(~ia)J1(~ia) - Jo(~ia)yl(~ia) .

Using Equation (2-20) to eliminate the second cross product of Bessel

functions in Equation (2-43) and Equation (2-40) for the third cross product,

we have that

a

b

b’

[

22
rR~(r) dr - ~

1
yo(~ia)Jo(~ib)-Jo(~ia)Yo(~ib) - —

~2A2 “
i

(2-44)

Equation (2-44) may be further simplified by solving Equation (2-20) for

Yo(Aia), substituting it into Equation (2-44) and reapplying EqtlatiOn (2-40) to

give

b

(

2 2 [1J~(Aia)‘Ri ‘r - ~2A2
-1.

a i
J;(Aib)

(2-45)
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Combining Equations (2-34), (2-35), (2-41), and (2-45) results in

ci~+[J:(A:(:i;(Aiajjo(z)zj(z)dz- (2-46)

The pressure at any point in the domain at any time can be calculated

using Equations (2-29) and (2-46). This solution is for an arbitrary initial

fluid pressure that varies with depth. For this work, there are two initial

fluid pressures of interest. In the first case, the borehole is drilled very

soon after ❑ining the drift such that P. is essentially a constant throughout

the DRZ. In the second case, there is a considerable time period from when

the drift is mined until the borehole is drilled. In this second case, the

initial fluid pressure is more complicated, but the integral given in

Equation (2-46) can still be evaluated analytically. The solutions for both

cases are presented below in Sections 2.1 and 2.2, respectively.

2.1 SolutionforU niformC onstantlnitial Pressureinthe DRZ

For P. equal to a constant, Pm-Pa, where Pm is the pressure in

undisturbed rock, Equation (2-46) reduces to

4“(P - pa)

[

J:(Aib)

Cij - (2; - 1)
J;(Aib) - J~(Aia) 1. (2-47)

Substituting Equations (2-19), (2-25), and (2:47) into Equation (2-29). .

results in the solution for uniform initial pressure, which is given by
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m 4(P@-Pa)J~(Aib)sin[q z] (YO(Aia)JO(Air) -JO(Aia)yO(A~.r))

p-r I
—x

(2j-l)[J~(~ib)-J~(~ia)]
i-1 j-1

(2-48)

exp
[
-at(A: + q2)

j 1

where Ai is given by Equation (2-20), and qj is given by Equation (2-26).

The expression given in Equation (2-48) may be factored into two parts,

one completely determined by the index i, and the other completely determined

by the index j.

computationally

summations, one

Equation (2-48)

Thus , instead of evaluating a double summation, it is

faster to evaluate Equation (2-48) as a product loftwo

on i and the other on j . By performing this factorization,

can be evaluated as

P=
[ 1 [-atA:]

4(Pm-Pa)J~(Aib) Yo(Aia)Jo(~ir) -Jo(~ia)yo(~ir) exP

J:(Aib) - J~(Aia)

[Sin[qjz]lexp[-atfl

2j-1

x

(2-49)

2.2 Solution for Depth-Dependent initial Pressure inthe DRZ

For a mined horizontal surface, the fluid pressure adjacent to the

surface is assumed to vary only with depth and time. In this case Equation

(2-1) reduces to the classical one-dimensional Diffusion Equation given by

(2-50)
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where p is the fluid pressure minus the ambient pressure, ~ is the time from

when the floor of the drift is mined and is not equal to t, the time from

when the borehole is drilled. In the process of mining a drift, the rock is

assumed to be altered to allow fluid flow up to an arbitrary but finite depth

H. At depths greater than H, no flow is assumed. The value of H is not

determined in this work and must be specified independently. Because the

depth of the DRZ may be only several meters, the fluid pressure just prior to

mining the drift is assumed independent of depth and is taken as a constant

Pm-Pa for O < z s H.

With these modeling assumptions, the conditions on Equation (2-50) are

given by

-PPa-pa atr-=O, O<z<H (2-51)

P =0 at r > 0, z = O (2-52)

*=0
az

at r >0, z -H . (2-53)

The solution to Equations (2-50) to (2-53) may be obtained by the method of

Separation of Variables, and is given by

where the eigenvalues are given by

(2m-l)n
7m=2H.

(2-54)

(2-55)

From Equation (2-54), p/(Pm-Pa) is a function only of two dimensionless

groups, a dimensionless distance z/H, and a dimensionless time ar/H2. For

23



long times as ar/H2 + ~, the fluid drains to the surface z - 0 until the

pressure throughout the DRZ goes to the ambient pressure.

If the borehole is drilled at time r, then Po(z) - p(z,r), and

substituting Equation (2-54) into Equation (2-46) results in

Q

Wi!!+ E [ 1]fJ?l!!2exp-.,7* for H<L

‘j
m

m-l

for H=L (2-56)4

[1(*j-l) ‘Xp ‘a’n:

‘here‘jm (x) is givenby

<

[
sin x(q.

J ‘7JI ‘in[x(qj+ym)l

*(q. - 7m) - *(qj + ym)
forq *Y

J
jm

‘jm(x) - <

sin(2q.x)
x—-
2 47.

\ J

(2-57)

forq =7
jm”

The complete solution for this case is given by Equation (2-29) with C..lJ

determined from Equation (2-56) with r equal to the time between mining the

drift and drilling the borehole.
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3.0 PRESSURE PROFILE FOR THE WVO-DIMENSIONAL INFINITE-RADIUS MODEL

The governing equation for a two-dimensional infinite-radius model is

the same as that given by Equation (2-3), except that as shown in Figure 4,

the domain of the problem is over the region a < r < CO. Therefore, the

equation and boundary conditions to be solved are given by

a2p +~g+a2p 1 ap

i?r2
r ar —“GE

az2

P - PO(2) att-O, OSz<L,a Sr<@ (3-2)

P-o at t > 0, 0s z s L, r - a (3-3)

P + P(z,t) at t > 0, 0 < z < L, r+m (3-4)

P-o at t > 0, z - 0, a< r <~ (3-5)

ap
Z’”

at t> O, z - L, a< r<m . (3-6)

Equation (3-4) states that as r + CO,P is independent of r. This condition

therefore requires that as r + ~, the partial derivative of P with respect to

r is zero.

The system given by Equations (3-1) to (3-6) is solved by the method of

Separation of Variables, using the same notation as in Equation (2-9). The

vertical eigenfunction Z(z) is the same as that for the two-dimensional

finite-radius model given by Equations (2-25) and (2-26). The radial

eigenfunction R(A,r) is governed by

d2R +~~+A2R=o
forasr<a.

dr2
r dr

(3-7)

From Equations (3-3) and (3-4), the boundary conditions on R are given by
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R-O atr=a

R - constant as r +m .

(3-8)

(3-9)

The general solution to Equation (3-7) is given by

R(A,r) - AJo(Ar) + BYo(Ar) . (3-lo)

Equation (3-8) can be used to determine the constant A, and thus to within a

multiplicative constant, R(A,r) is given by

R(A,r) - Yo(Aa)Jo(Ar) - Joy for asr<a. (3-11)

Equation (3-9) is automatically satisfied for A > 0, because both Jo(Ar) and

Yo(Ar) approach zero as r + ~. Therefore, instead of discrete eigenvalues,

R(A,r) will satisfy Equation (3-7) for all values of A between O and UJ. In

addition, from Equations (2-16), (2-17), (3-9), and (3-11),

dlt(~,r) =- AIYo(~a)J1(~r) - Joy]
dr r+.m

(3-12)

The governing equation for T is similar to Equation (2-27), and is given by

dT
z“”

a(A2 + q~)T . (3-13)

The solution to Equation (3-13) is given within a multiplicative constant by

T = exp[-at(J2 +9:)] .
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P may be determined by combining Equations (3-11), (2-25), and (3-14) to give

m..
w

P(r,z,t) =

El
[

Cj(A)R(A, r)Zj(z)exp - at(A2
1

+ t$ dl

j=l ~

(3-15)

where Cj(A) are constants that are determined from the initial condition

given by Equation (3-2).

The solution given by Equation (3-15) for a two-dimensional infinite-

radius model is the limit of the solution given by Equation (2-29) as the

outer limit of the DRZ extends to infinity. The primary difference is that

for the infinite-radius model, in the limit as b + CO,the summation over

discrete radial eigenvalues becomes an integral over continuous radial

eigenvalues .

The method for extracting Cj(A) from Equation (3-15) at t = O is similar

to that used in Section 2.0. However, there are several subtle steps because

the domain is infinite. For the infinite-radius model, start with a radial

domain from r = a to r = b, and then take the limit as b + UJ. -This is

similar to the method used to obtain the Fourier Integral over an infinite

domain (Arpaci, 1966; Hildebrand, 1962; Gray et al., 1952).

Att= O, Equation (3-15) reduces to

a) 0.3

Po(z) =
Ij

Cj(A)R(A,r)Zj(z) d~ .

j-l o

(3-16)

Multiplying both sides of Equation (3-16) by rR(u~r)Za(z), integrating over r

from a to b, and over z from O to L, interchanging the order of integration

and summation, and using Equation (2-32) results in
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L b L au b

1Z (Z) PO(Z) dz
j

JrR(ur)dr-lz~(z)dzP j(A)lrR(u9r)R(Ar)dr”A ‘3-17)
o a o 0 a

where u is a dummy radial eigenvalue. The first integral on the right-hand

side of Equation (3-17) has already been determined by Equation 1(2-35)and is

equal to L/2. The second integral on the left-hand side of Equation (3-17)

is similar to that given by Equation (2-38), but for a continuous eigenvalue

u,

b

J
rR(v,r) dr

[
- ~ yo(ua)J1(ub) - JOY

1
a

[ 1
- ~ YO(ua)J1(ua) - Joy .

(3-18)

As given by Equation (3-12), the first term in brackets on the right-hand

side of Equation (3-18) goes to zero as b goes to infinity. By using

Equation (2-40), Equation (3-18) reduces to

b

J

2
rR(u,r) dr - - ~ .

KU
a

Continuing with simplifying Equation (3-17), let

b

I-
J

rR(u,r)R(A,r) dr ,

a

(3-19)

(3-20)
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Substituting Equation (3-11) into Equation (3-20) and using the identity

(Abramowitz and Stegun, 1970, p. 484, Eq. 11.3.29)

(U* -
J

A2) rQo(ur)Wo(Ar) dr
[

- r uQ1(vr)Wo(Ar) - AQO(ur)W1(Ar)
1

where Q - JorY, andW= J or Y, results in

I(u2 - A*)
b [

= Yo-yo uJ1(vb)Jo(Ab) - AJo(ub)J1(Ab)
1

[
+ Jo(ua)Jo(Aa) uY1(ub)Yo(Ab) - AYo(vb)yl(~b)

1

[
- yo(Ua)Jo(~a) UJ1(Ub)yo(Ab) - ~Jo(vb)Y1(Ab)

1

(3-21)

(3-22)

[ 1
- Joy uY1(ub)Jo(Ab) - AYo(ub)J1 (Ah) .

Using the trigonometric identities (Abramowitz and Stegun, 1970, p. 72)

[1
sin x - 1

2
- - Cos(x) (3-23)

[1
Cos x - ~

2
- sin(x), (3-24)

the asymptotic expansions (Abramowitz and Stegun, 1970, p. 364, Eqs. 9.2.1

and 9.2.2)

(3-25)

29



‘1(”) +E ‘in[A’ -:1

‘0(”) +E ‘in[’b -4

~’+w

(3-26)

(3-27)

(3-28)

can be obtained and used to reduce Equation (3-22) for ub and Ab approaching

infinity to

Yo-yo
[1 ‘in[u’ - :l’Os[” -d -E Cos[ub - :lsinF” -:11

- Jo(ua)Jo(Aa)
[E Cos[ub - :Isin[’b -:1 -E ‘in[u’ - :Ic”s[’b -:11

(3-29)

- Yo(ua)JO(Aa)
[E ‘in[ub - dsin[’b-:1+ECos[ub-aco+b-41

+ Joy
[F Cos[ub - :lcOsFb -:1+ E ‘in[ub - :lsinFb -41 ~

Using Equations (3-23) and (3-24) and the identities (Abramowitz and Stegun,

1970, p. 72, Eqs. 4.3.31 to 4.3.33)

2cos(x1)sin(x2) = sin(xl + X2) - sin(xl - x2)

2sin(x1)sin(x2) = Cos(xl - X2) - cos(xl + x2)

2COS(X1)COS(X2) = CO’(X1 - X2) + CO’(X1 + X2) ,

(3-30)

(3-31)

(3-32)
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Equation (3-29) reduces to

YO-YO
I=-

2 [r
~ sin[b(~ - u)] +

r
~ sin[b(~ - v)]

n(u - A2) 1
JO(ua)JO(Aa)

2 [[
~ sin[b(~ - u)] +

r
~ sin[b(~ - u)]

n(u - ~2) 1
(3-33)

YO(ua)JO(Aa)

2 [.r
~ cos[b(~ - u)] +

r
: cos[b(~ - u)]

n(v - ~2) 1
+ ‘@’;)yo(Aa)[r:cos[b(~ - v)] +

r
; cos[b(~ - v)]

i’r(v - ~2) 1
+ Terms containing cos[b(~+v)] or sin[b(~+v)] .

Substituting Equations (2-35), (3-19), and (3-20) into Equation (3-17)

results in

4-—
2

mLv
0“

L co b

Zj(z)po(z) dz = lim

11

Cj(A) I drd~
b+ca

o a

(3-34)

where I is given by Equation (3-33). Notice that I is composed of terms

containing either cos[b(~-v)] and sin[b(~-u)], or cos[b(~+u)] and

sin[b(~+u)] . The trigonometric terms with a difference of eigenvalues are

given explicitly in Equation (3-33). For these terms let

t -b(A-v) ,

and for trigonometric terms with a sum of eigenvalues let

(3-35)
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@ =b(A+u) . (3-36)

With these changes in variables, for fixed values of ~ and ~, as b + a, A

approaches respectively,

(3-37)

(3-38)

Substituting Equations (3-35) and (3-36) into Equation (3-33), taking the

limit of Equation (3-33) as b + ~, and using Equations (3-37) and (3-38) on

the expressions YO(Aa), Jo(~a), (U/~)1/2, and (A/u)l/2, reduces Equation

(3-34) to

L

o

m

[1
5

Cjb+u

-bu

a

+ lim I[1
cj~+u

b-)a

-bu

2Y~(ua) sin(.$)

[1=-~-g
b

b2

2J~(ua) sin(~)

[1-—.22u.f
x

b
b2

+ lim
1[ 1

$– - u [trigonometric
b+a Cj b

(3-39)

terms of (*)] #

bu
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where the third and fourth terms on the right-hand side of Equation (3-33)

cancel in the limit as b + ~. Also, as b * a, the lower limit of integration

approaches the upper limit of integration for the last term on the right-hand

side of Equation (3-39). Therefore, this term is zero, and Equation (3-39)

reduces to

4-—
2

nLv

0“

L
w

[
c (v) Y~(va) + J~(Va)
j 1

z (z)po(z) dz =
j

I

‘in(f) d< .
xv f

-00

(3-40)

The integral on the right-hand side of Equation (3-40) is equal to m

(Abramowitz and Stegun, 1970, p. 78, Eq. 4.3.142). Therefore, replacing v

with A in Equation (3-40) results in

cj(A) - -

L

4

[
Zj(z)po(z) dz ,

r~ 9 1
(3-41)

o

The pressure at any point in the domain and at any time can be

calculated using Equations (3-15) and (3-41) for an arbitrary initial

pressure profile given by Po(z). Two cases for P. are of interest and are

presented in Sections 3.1 and 3.2, for P. constant and P. determined for the

case of significant depressurization caused by mining the drift,

respectively.

3.1 Solution for Uniform Constant initial Pressureinthe DRZ

For P. equal to a constant, Pm - Pa, Equation (3-41) reduces to
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8(Pm - pa)
cj (A) - -

[
m2~(2j-1) Y~(Aa) + J~(~a)

1

(3-42)

Substituting Equations (2-25), (3-11), and (3-42) into Equation (3-15)

results in the solution for the two-dimensional infinite-radius model for

uniform initial pressure, which is given by

w

001] [ 1
8(P@-Pa) YO(Aa)JO(Ar) - JO(~a)YO(Ar) sin(vjz)

P-- x

j-1
[

x2~(2j-1) Y~(Aa) + J~(.Ja)
1

0

[ 1
exp -at(A2+q~) d~ .

For computational efficiency, Equation (3-43) may be factored into

P=

co

0“

al

[
8(Pm-Pa) Yo(Aa)Jo(~r)

1
- Joy exp(-atA2)

dA

T [Sin%z)lexp[-at’fl

IL *j-l
j=1

(3-43)

x

(3-44)

Equation (3-44) eliminates the need to evaluate repeatedly the integral in

Equation (3-43).
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3.2 Solution for Depth-Dependent Initial Pressure in the DRZ

For PO(Z) given by Equation (2-54), the integral in Equation (3-41) may

be evaluated to give

cj(A) =

4

[ 1[Pa-Pm cos(qjH) m

E

48jm(H)
+

( )]

2
(2m-l)7r‘Xp ‘aTym

forH<L
nLA Y~(Aa)-J~(Aa) ‘j m=1-

r 1

4

[)

2
(2j-1) ‘Xp ‘aTqj

.
w

E
4ejm(L)

[1

2
(2m-l)7r‘Xp ‘arym

m=1

forH=L (3-45)

forH>L

where 8jm (x) is given by

[[
sin x(q

j-7m)l ‘in[x(qj+7m)l

‘jm(x) -

1

I 2(qj - ym) - 2(qj + -ym)
for qj * Ym

(3-46)

I x
sin(2qjx)

—-
2 49.

J

The complete solution for this case is

determined by Equation (3-45).

for qj = -ym .

given by Equation (3-15) with Cj(~)
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PRESSURE PROFILE FOR THE ONE-DIMENSIONAL FINITE-RADIUS MODEL

A schematic diagram of one-dimensional radial flow for a finite DRZ is

shown in Figure 2. In comparing Figures 2 and 3, notice that for the one-

dimensional model, flow to the drift is neglected. The governing equation

for one-dimensional radial flow in a finite DRZ is given by

a2p +~~=lap ——

ar2
r at- a at

The conditions

from Equations

P-PO

P-o

ap o
K-

From Equations

given by

co

P=
E
i=l

(4-1)

on Equation (4-1) for a DRZ of finite radius may be obtained

(2-4) to (2-6), and are givenby

at t - 0, asr~b (4-2)

at t> O, r - a (4-3)

at t > 0, r -b . (4-4)

(2-19) and (2-28), the solution to Equations (4-1) to (4-4) is

[
Ci yo(~ia)Jo(~ir) ) [-a+

. Jo(Aia)Yo(~ir) exP (4-5)

where Ai is determined from Equation (2-20), and Ci are constants.

‘0 ‘etermine Ci’
evaluate Equation (4-5) at t = O, substitute Equation

(4-2), multiply both side by rR1(r), integrate from r - a to r - b, and use

Equation (2-31) to obtain
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Ci =

b

‘o
f

rRi(r) dr

a

b

JrR~(r) dr

a

Substituting Equations (2-41) and (2-45) into Equation (4-6) results in

nPoJ;(Aib)

Ci =

J;(Aib) - J~(Aia)

(4-6)

(4-7)

Substituting Equation (4-7) into Equation (4-5) results in the solution to

Equations (4-1) to (4-4), which is given by

co 2 2

P=
I

‘pOJl(Aib)exp[ -QtAi]

[
Yo(~ia)Jo(Air) 1-Jo(Aia)Yo(~ir) .

i=l
[
J~(Aib) - J~(Aia)

1

(4-8)

For one-dimensional radial flow, vertical variations in the DRZ due to

mining the drift prior to drilling the borehole cannot be included.

Therefore, only the case of constant P. is determined for one-dimensional

radial flow.
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5.0 PRESSURE PROFILE FOR THE ONE-DIMENSIONAL INFINITE-RADIUS MODEL

In the limit as the outer radius of the DRZ approaches infinity, the

finite domain shown in Figure 2 reduces to the infinite domain shown in

Figure 1. For the infinite domain, the governing equations are given by

P=PO att= O,aSr<m

P-o at t > 0, r - a

P-PO at t > 0, r+~ .

(5-1)

(5-2)

(5-3)

(5-4)

Using the method of Separation of Variables, assume that the solution to

Equations (5-1) to (5-4) is given by

P - R(r)T(t) (5-5)

where R and T are the radial and temporal eigenfunctions, respectively.

Substituting Equation (5-5) into Equation (5-1) results in Equations (3-7) to

(3-12) for R(r). However, T(t) is given within a multiplicative constant by

T = exp[-atA2] . (5-6)

Combining Equations (3-11) and (5-6) results in

m

P(r,t) -
J

C(A)R(A, r)exp[-atA2] d~

o

(5-7)
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where C(A) is determined at t - 0. Substituting Equation (5-2) into Equation

(5-7), multiplying both sides by rR(u,r), and integrating over r from a to b

results in

b b

‘o J
rR(v,r) dr

-~ J
C(A) rR(v,r)R(A,r) drdA . (5-8)

a o a

In the limit as b approaches infinity, Equation (3-19) can be substituted for

the integral on the left-hand side of Equation (5-8). The right-hand side of

Equation (5-8) can be determined from the right-hand sides of Equations (3-

34), (3-39), and (3-40) in the limit as b approaches infinity. Therefore,

Equation (5-8) reduces to

2P0 [
C(A) Y~(Aa) + J~(Aa)

1
.— .

2 A
f?A

(5-9)

Solving Equation (5-9) for C(A), and substituting C(A) into Equation (5-7)

results in the solution to Equations (5-1) to (5-4), which is given by

co

2P0
P=-—

x
exp[-aA2t]

Jo(,lr)Yo(Aa) - Yo(Ar)Jo(Aa)
1 dl . (5-lo)

o

This solution agrees with that reported previously (Crank, 1975, p. 87) and

has been used to interpret brine inflow data (Nowak and McTigue, 1987;

McTigue and Nowak, 1987; Nowak et al., 1988; Finley et al., 1992!).
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6.0 FLUID PRODUCTION INTO THE BOREHOLE AND INTO THE DRIFT

The previous analyses determine the fluid pressure throughout the DRZ.

However, it is the fluid collected in the borehole that is more readily

measured, and not the fluid pressure throughout the domain. Because it may

be possible to isolate intervals of the borehole for fluid collection, in

this section expressions are derived for the fluid collected over an

arbitrary intenal in the borehole and over an arbitrary time period. From

these expressions, an exact solution can be obtained for the brine inflow

rate for the two-dimensional model divided by that for the one-dimensional

model. This ratio is a function of only a single dimensionless group that

can be easily evaluated. This dimensionless group can be used as a

conditional test for determining when two-dimensional effects are important,

without requiring any computations of fluid pressures or flow rates.

To determine the importance of fluid loss to the drift, an expression is

also derived for the fluid-flow rate escaping to the drift as a function of

time for the two-dimensional finite-radius model. For long times, the

percentage of the flow rate to the borehole approaches a value independent of

time or the rock permeability. This asymptote can also be evaluated without

solving for the pressure field or the brine inflow rate.

The fluid velocity into the borehole is a function of depth and time.

For a homogeneous porous medium, this velocity is given by Darcy’s Law,

(6-1)

Notice in Equation (6-1) that the flow velocity is in the negative r-

redirection,and therefore the velocity into the borehole is proportional to

the pressure gradient, and not the negative of the gradient. The derivative

of Ri(r) with respect to r is needed to determine the gradient of P at r - a.

Using Equations (2-16), (2-17), (2-19), and (2-40), this derivative is given

by
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dR
i

– Ai(JO(Aia)Y1(Aia) - YO(Aia)J1(Aia)) = - & .
dr –

Ir=a

Therefore,

v=

03 02

(one-dimensional)
(finite-radius)

(6-3)

-cxt(A2 + +] d~
(two-dimensional )
(infinite-radius )

o

(one-dimensional )
(infinite-radius )

(6-2)

where C. .
lJ

is given either by Equation (2-47) for P. constant, or Equation

(2-56) for P. varying with depth, Ci is given by Equation (4-7) for one-

dimensional flow with a finite DRZ, and Cj(A) is given by either Equation

(3- 42) or (3-45). The fluid velocity for the one-dimensional infinite-

radius model is obtained from Equations (5-10), (6-l), and (6-2) and agrees

with the solution reported in the literature (Crank, 1975, p. 87) .

The flow rate into the borehole over the depth interval L1 to L2 can be

determined by integrating the velocity over the cylindrical surface of the

interval in the borehole, and is given by
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‘2

F= 27ra

I

v dz for OS Ll<L2<L . (6-4)

‘1

F can be determined by substituting Equation (6-3) into Equation (6-4) to

obtain

F=

m co

4k

P-1 E
i=l j-l

4k(L1 - L2)

P

J Vj J ]exp[-at‘;+i])
“Ci.[cos(q.L2)-cos(q.L1)]

(two-dimensional)
(finite-radius)

~ Ciexp(-atA~]
(one-dimensional )
(finite-radius)

i-l

(6-5)
I co

03

4k

11[’

C.(A)[cos(q.L2)-cos(q.L1) ]

T ‘][ 1
exp -at(A2+q~)] d~

j-1 ‘j
n (two-dimensional)
u

(infinite-radius )

co

8kPo(L2 - Ll)

p7r

o

2
-aA t

e
d~

(one-dimensional)

[ 1

(infinite-radius) .
A J~(Ja) + Y~(Aa)

The integrands for an infinite domain given in Equation (6-5) are

singular for A - 0. Therefore, for numerical computation of the integral, D.

McTigue (Sandia National Laboratories, Department 1513) has developed a

scheme that splits the integral into two parts. The first part of the

integral is evaluated analytically over the domai’nA = O to A = E, as E + O.

The second part of the integral is evaluated numerically from A - c to A + ~.

The upper limit of the second part of the integral is determined by

increasing this limit until the value of the integral converges. A
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deviation of McTigue’s method for analytical integration of the first part

of the integral is given in Appendix B.

If the initial pressure profile is depth-dependent, such as in the case

when there is much time between mining the drift and drilling the borehole,

then a two-dimensional model is appropriate. However, for a constant initial

pressure, the one-dimensional flow rates may be comparable to those

calculated with the two-dimensional model. A quantitative conditional test

for determining if two-dimensional effects are important can be developed

from Equation (6-5), for constant PO = Pm - Pa. In this case, t’heratio of

the fluid production rates over the entire borehole for the two-dimensional

model divided by that for the one-dimensional model is given by

[

4at (2j-l)2fi2
exp - —al

‘2D 8

I

L2 16 1—=—
‘lD X2

j-1
(2j-1)2

‘1 -0,L2-L . (6-6)

Equation (6-6) is valid regardless of the DRZ outer radius, as long as

the same outer radius is used in determining F2D and FID. For at/L2 - 0, the
.

summation in Equation (6-6) reduces to mz/8. Thus in this limit, the

production rates for one- and two-dimensional models are identical. As

expected, as L + ~, the two-dimensional brine inflow rate approaches the

inflow rate for the one-dimensional model. However, for a positive value of

at/L2, the summation is less than m2/8. Therefore, compared to the two-

dimensional model with the same DRZ outer radius, the one-dimensional model

always overestimates the flow rate to the borehole.

In Equation (6-6) the term 4at is defined in this work to be equal to

the square of the penetration depth, D The penetration depth is a measure
P“

of how far significant depressurization has traveled into the DRZ away from

the borehole, or from the drift. This concept will be explainect in much

greater detail in Section 8.1. From the definition

D2 = 4at,
P

(6-7)
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Equation (6-6) can be expressed as

‘2D 8—= —

‘ID r2

‘xp[-$2’~~)2:1
(2j-1)2

‘1
= O, L2 = L . (6-8)

A plot of Equation (6-8) is given in Figure 5.

From this analysis, Dp/L is the important criterion, not L/a, for

determining if two-dimensional effects are important. The larger Dp/L, the

greater the importance of two-dimensional effects. The test for the one-

dimensional solution for the brine inflow rate, to be within 5 or 50% of that

for the two-dimensional solution, requires Dp/L to be less than 0.0886 or

0.887, respectively. By rearranging Equation (6-7) and substituting Equation

(2-2), this test sets an upper bound on the time over which the one-

dimensional solution may be used for a specified percentage agreement with

the two-dimensional solution. Thus , the conditional test can be expressed as

a maximum time that one- and two-dimensional models agree, and is given by

[D /L]:p[#cf+ cr]L2
t=
max 4k

(6-9)

where [Dp/L]* given in Equation (6-9) may be, for example, either 0.0886 or

0.887 for 5 or 50% agreement, respectively, between the two- and one-

dimensional flow rates.

The fluid velocity into the drift depends on r and is given by

k ap
u-——

P az Z=o “
(6-10)

From Equations (2-29) and (3-15), this velocity is given respectively by
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Figure 5. Flow rate to the borehole for two-dimensional models divided by the

flow rate to the borehole for one-dimensional models, f“orthe same

DRZ outer radius, as a function of the penetration depth divided by

the borehole length, for constant initial pressure in t:heDRZ.
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The flow

velocity over

given by

w cm

~E I cij’jRi‘Xp[-a’[’f + i]]
i-1 j-1

(two-dimensional)
(finite-radius) .

02

[ 1
Cj(A)qjR(A,r)exp -at[A* + q;] d~

(6-11)

(two-dimensional)
(infinite-radius )

rate into the drift can be determined by integrating the

the surface area of the DRZ that is bounded by the drift and is

b

f= 27r
J

ru dr . (6-12)

a

Substituting Equation (6-11) into Equation (6-12) for the two-dimensional

finite-radius model and using Equation (2-41) results in

f= -s r’y ‘x’[-a”A: + “;’1

(two-dimensional)
(finite-radius) “ ‘6-13)

i-1 j=l i

The percentage of the flow rate to the borehole is given by
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where F and f are given by Equations (6-5) and (6-13), respectively. For the

two-dimensional finite-radius model, F% must be close to 100 for flow to the

drift to be unimportant.

A simple expression for F% may be obtained for long times, such that

only the first term is required in the eigenfunction expansions for F and f.

In this limit, F% is given by

100A:
F% = for

2 2
at~ >> 1, and atq >> 1

A: + q:
1 1

(6-15)

where Al and VI are given by Equations (2-20) and (2-26), respectively. A

major advantage of using Equation (6-15) is that F% reduces to a function of

only three geometric parameters (a, b, and L) . F% will be close to 100, and

thus flow to the drift will be unimportant if the following condition is

satisfied:

for at~~ >> 1, and
2

atq
1
>>1. (6-16)

As is shown in Section 8.2 for parameters typical of the WIPP, even for short

time scales on the order of days, Equation (6-16) provides a gocldupper

estimate of the percentage of the flow rate to the borehole.

For checking the condition given in Equation (6-16), ql can be

determined from Equation (2-26) and is given by 7r/(2L). The first radial

eigenvalue, Al, is the solution to Equation (2-20) for i - 1 and can be

determined numerically using the method given in Appendix A. For

convenience, Al is given in Figure 6 for a range of inner and outer DRZ

radii. Notice that ql is inversely proportional to L. Therefore, flow to

the drift becomes less important as the borehole depth increases. This

observation agrees with what one would expect; however, Equations (6-14) and

(6-16) provide a quantitative basis for determining the length of the

borehole required to neglect flow to the drift.
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First radial eigenvalue as a function of the DRZ inner radius a,

and the DRZ outer radius b. This plot is a solution of Equation

(2-20) for i - 1.
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7.0 CUMULATIVE FLUID PRODUCTION

The cumulative fluid volume collected in the borehole

from depths L1 to L2 is given by

‘2

F-
J

F dt

‘1

for Ost1<t2.

Substituting Equation (6-5) into Equation (7-1) for finite

F
co 02

4k

11 ‘

Ci. [cos(q.L1) - COS(TL2)1

x
ap

i=l j=l
tlj (A: + J)

[[‘Xp-at,(’:+i)l - ‘Xp[-atl(’:+i) 1]

F= 1
(two-dimensional )
(finite-radius)

I (one-dimensional)

[
(finite-radius) .

from time tl to t,

(7-1)

DRZS results in

(7-2)

The cumulative fluid volume produced over the entire borehole up to time

‘2 may be determined directly from Equation (7-2) and is given by
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m a

4k

11

Ci.

‘[[ 11(two-dimensional )
— exp -at (A?+q2)

21J
- I (finite-radius)

up
i-l j-l qj(~: + 9;) (L1-O, L2=L, tl=O)

(7-3)

‘X4-UN - q

(one-dimensional )
(finite-radius )

(L1-O, L2-L, tl=O) .

The cumulative fluid volume escaping into the drift from time tl to t2

is given by

‘2

for Ost1<t2 .

‘1

Substituting Equation (6-13) into Equation (7-4) results in

(7-4)

[

22
- ‘Xp ‘atl(Ai+9j)1]

. (7-5)

For one-dimensional radial flow, u, f, and ~ are zero because there is

no flow in the vertical direction. As will be shown in Section 8.2, even for

values of b/L < 1, the one-dimensional approximation can neglect the dominant

fluid flow path out of the DRZ.

For a finite DRZ, the total fluid volume that will be produced is given

by the sum ~ + ~ in the limit as t2 + CO. From Equations (7-3) and (7-5) this

limit is given by

52



(two-dimensional, finite-radius)
(L1-O, L2-L, tl-O, t2+~)

02

4kL

-E-

Ci (one-dimensional, finite-radius, ~ - O)
ap

A2 (L1-0’L25L’ tl=O’t2+m) “
i-l i

(7-6)

If the rock compressibility is neglected (i.e., Cr - O), for constant Po(z) -

Pm - Pa, this limiting total fluid volume produced from the DRZ can also be

determined directly from the definition of fluid compressibility, which is

given by

1 dp
Cf ‘~dP

(7-7)

where p is the fluid density. Integrating Equation (7-7) from ambient

conditions (which are denoted by the subscript a) to far-field conditions

(which are denotedby the subscript UY),the fluid density at ambient conditions

is given by

Pa
[ 1

- pmexp cf(Pa-Pm) . (7-8)

The total pore space in the DRZ is given by

v= #Lm(b2 - a2) . (7-9)

This is the space occupied by the fluid initially. In the limit as t2 + ‘,

all the fluid will be at pressure Pa and thus have a density pa. In this
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limit, the total space occupied by the fluid is A + V, where A is the

incremental space the fluid occupies due to depressurization to ambient

conditions. Because the fluid mass is the same before and after

depressurization, Equation (7-8) can be expressed as

1

[ 1
— = + exp cf(Pa - Pm) .
V+A (7-lo)

From Equation (7-1O) the incremental fluid space can be determined, and is

equal to the total fluid volume produced into the borehole plus the fluid

volume escaping into the drift. Thus ,

(i + 7)
m A = 4nLF2 - ~l[exp[cf[p~ - ‘a]] -11-

‘2+-

‘1-0

‘1-0
“=L

‘O-pm-pa
c -0
r

(7-11)

Equation (7-11) provides a convenient independent check on Equation (7-6).
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8.0 SAMPLE CALCULATIONS

The solutions given previously are in terms of infinite series

eigenfunction expansions. Although these are exact solutions, from the

equations it is very difficult to gain an appreciation of the behavior of the

solutions. Therefore, several sample calculations are presented in Sections

8.1 and 8.2. To present a manageable number of cases for comparison, the

following parameters are held constant for all the sample calculations:

4= rock porosity - 0.01

Cf = fluid compressibility [from Rechard et al., 1991] - 2.5 x 10-10 Pa-l

cr = rock compressibility = 4.8 x 10’12 Pa-l

L = borehole length = 3.0 m

a = borehole radius = DRZ inner radius = 0.05 m

Pm = fluid pressure in undisturbed rock = 11 x 106 Pa

Pa = ambient pressure in borehole and in drift E 0.1 x 106 Pa

P = fluid viscosity = 0.0016 Pa*s.

The values chosen correspond to conditions in halite at the WIPP Site.

It had been anticipated that if the ratio L/a >> 1, the flow would be

predominantly one-dimensional. However, as shown in Section 6.0, this ratio

is not the appropriate one to use for assessing the importance of two-

dimensional effects. Further, the results in Sections 8.1 and 8.2 show that

even with L/a = 60, there are still significant two-dimensional effects.

Two-dimensional effects can influence the solution through a depth-

dependent initial condition resulting from mining the drift and through fluid

escaping to the floor of the drift after drilling the borehole. One -

dimensional models cannot incorporate a depth-dependent initial condition.

Therefore, in the first two sets of sample calculations, the initial fluid

pressure is constant so that one- and two-dimensional models may be compared

for the same initial conditions. Thus , the two-dimensional effect discussed

in these sample calculations is a result of only neglecting flow to the drift

during brine flow to the borehole. A summary of-the sets of sample

calculations is given in Table 2.
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Table 2. Sample Calculations

Figure Plot Type*

7

8

9

10

11

12

13

14

15

16

Two-Dimensional Contours of

(Pf - pa)/(pm - pa)

Two-Dimensional Contours of

(1’f- pa)/(p@ - pa)

Two-Dimensional Contours of

(Pf - pa)/(pm - pa)

Two-Dimensional Contours of

(Pf - pa)/(pm - pa)

Two-Dimensional Contours of

(Pf - pa)/(pm - pa)

Brine Inflow Rates

For All Four Models

Brine Inflow Rates

For All Four Models

Brine Inflow Rates

For All Four Models

Percentage of Flow to

Borehole for Two-Dimensional

Finite-Radius Model

Brine Inflow Rates

For All Four Models

Parameters

Penetration Depth = 2(at)1/2 = 0.2 m

DRZ outer radius = b = 1.0 m

Penetration Depth = 2(at)1/2 = 1.0 m

DRZ outer radius = b = 1.0 m

Penetration Depth = 2(at)1/2 = 3.0 m

DRZ outer radius = b = 1.0 m

Penetration Depth = 2(at)1/2 = 1.0 m

DRZ outer radius = b = 3.0 m

Penetration Depth = 2(at)1/2 = 3.0 m

DRZ outer radius = b = 3.0 m

Rock Permeability = k = 10-20 m2

Rock Permeability = k = 10-21 m2

Rock Permeability = k = 10-22 m2

Rock Permeability = k - 10-20 m2

DRZ depth = H = 3.0 m

Time period between mining drift

and drilling borehole = r = 1 year
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Table 2. Sample Calculations (continued)

Figure Plot Type* Parameters

17 Brine Inflow Rates Rock Permeability - k = 10-21 m2

For All Four Models DRZ depth = H = 3.0 m

Time period between mining drift

and drilling borehole = r = 1 year

18 Brine Inflow Rates

For All Four Models

Rock Permeability = k = 10-22 m2

DRZ depth = H = 3.0 m

Time period between mining drift

and drilling borehole = r = 1 year

*
Notation

‘f - fluid pressure

Pa = ambient pressure in borehole and in drift

Pm = fluid pressure in undisturbed rock far from drift or borehole

In the first set of sample calculations, contours of (Pf-Pa)/(Pm-Pa), a

dimensionless pressure as determined from Equation (2-49) are given for

different values of b, the outer radius of the DRZ. The objective of these

calculations is to display depressurization of the region due to brine

escaping into the drift and flowing into the borehole.

The second set of solutions presents borehole brine inflow rates for all

four models (i.e., one-dimensional infinite-radius, one-dimensional finite-

radius , two-dimensional finite-radius models, and two-dimensional infinite-

radius), for different values of k, the permeability, and b, the outer radius

of the DRZ. By comparing results from different models, the effects of

neglecting flow to the drift are highlighted. To further display these

effects, a plot showing the percentage of the flow to the borehole for the

two-dimensional finite-radius model is given.
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The two-dimensional effect of mining the drift one year before drilling

the borehole is presented in the third set of sample calculations. In these

calculations, except for ~, all the parameters are identical to those used in

the second set of calculations. Thus, by comparing the second and third sets

of calculations, the effect of prior depressurization can be displayed. This

effect is not included in one-dimensional models.

For the calculations, the functions JO, YO, Jl, and Y1 are determined

using polynomial approximations (Abramowitz and Stegun, 1970, pp. 369-370,

Eqs. 9.4.1-9.4.6). These are the only Bessel functions required to compute

the solutions for the pressure contours and the brine inflow rates. All

infinite series are summed until the partial sums converge to within three

significant figures. As noted after Equation (2-48), double summations can

be avoided because they factor into a product of two summations as given by

Equation (2-49). This simplification greatly reduces computer time and is

also used for evaluating the double summation in Equation (6-5). The

integrals for the infinite-radius models are calculated using the method

discussed after Equation (6-5) and in Appendix B. For this calculation, c is

10-6 m-l, and the second part of the integral is computed using an adaptive

Gauss-Legendre quadrature technique.

8.1 Sample Calculations ofTwo-Dimensional Contoursof

the Dimensionless Pressure

The two-dimensional finite-radius solution for constant initial pressure

in the DRZ is given by Equation (2-49). For this case, the fluid pressure

throughout the DRZ is initially Pm, and at time just greater than zero, the

drift is mined and a borehole drilled such that at both of these locations

the pressure is at Pa. Under these conditions, the fluid pressure is

determined by the following 13 parameters, collected into four sets:

. The DRZ geometry: a, b, and L

. The physical properties of the halite: Cr, ~, and k

. The physical properties of the brine: cf and p

. The spatial position, time, and pressures: r, z, t, Pa, and Pm.
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From Equation (2-49) this list of 13 parameters can be grouped to only

seven parameters: r, z, L, at, a, b, and (Pf - Pa)/(Pm - Pa), where a is

defined in Equation (2-2). Because the DRZ inner radius a, and the borehole

length L, are held constant in the sample calculations, there are five free

parameters given by r, z, at, b, and (Pf - Pa)/(P@ - Pa). Thus, a contour

plot of the dimensionless pressure, given by (Pf - Pa)/(Pm - Pa), as a

function of r and z, is determined by specifying the two parameters, at and

b. This reduction in complexity is used in the following analysis.

Instead of discussing the solution for the fluid pressure minus the

ambient pressure, given by P, based on the above analysis, it is more

convenient to cast the problem in terms of the dimensionless pressure,

(Pf - Pa)/(Pm - Pa). Initially, the dimensionless pressure is 1 throughout

the DRZ. The system is abruptly disturbed by instantaneously dropping the

dimensionless pressure in the drift and in the borehole to O. (In reality of

course , mining the drift and drilling a borehole cannot be performed

instantaneously. Rather, these conditions are applied when the time to

perform these operations is much shorter than the time between completing

both operations and measuring the brine inflow rate.) For a fixed DRZ outer

radius b, a contour plot of the dimensionless pressure will evolve determined

only by the parameter group at. For convenience, this group can be used to

define a penetration depth given by,

‘“’m=krz“ (8-1)

The penetration depth is a measure of how far a disturbance in pressure will

propagate into the region. In the sample calculations, the disturbance is the

drop in pressure created in the borehole and in the drift. If at a location

in the DRZ, the distance to either the borehole or the drift floor is much

less than the penetration depth, then significant depressurization can be

expected at this location. Similarly, if the location is much farther from

the drift or the borehole than the penetration depth, then to a good

approximation the pressure at this location will not have yet been affected by

depressurization. Because the penetration depth increases with time, all
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locations in the DRZ a finite distance from the borehole or the drift floor

will eventually be affected by depressurization.

To demonstrate the utility of the penetration depth concept, contours of

the dimensionless pressure in the DRZ determined from Equation (2-49) are

shown in Figure 7 for a DRZ with an outer radius of 1.0 m and a penetration

depth of 0.2 m. Using Equation (8-l), and the parameters p, cf, Cr, and d

specified in Section 8.0, this penetration depth corresponds to a value of kt

= 1.2 x 10-16 m20s. Thus, if the DRZ permeability is 10-21 m2, t:hena

penetration depth of 0.2 m corresponds to a time of 1.2 x 105 s, or 32 hours.

Similarly, for a permeability of 10-20 m2, the penetration depth would

correspond to a time of 1.2 x 104 s, or 3.2 hours. Notice that since D <<
P

b-a, and Dp << L, there are hardly any pressure changes in the region that is

near the outer radius and the bottom of the DRZ. Nearly all the changes in

pressure are confined to a small region adjacent to the borehole and the

drift. As the penetration depth increases to 1.0 m (as shown in Figure 8),

much of the DRZ, which extends to a radius of 1.0 m, is now affected. For a

permeability of 10-21 m2, this greater penetration depth corresponds to a

time of 34 days. Figure 9 shows that for much longer times, corresponding to

a penetration depth of 3.0 m, which is much greater than the outer radius of

the DRZ, the pressure throughout the DRZ decays to a very small percentage of

the original pressure. For a permeability of 10-21 m2, this penetration

depth would correspond to a time of 304 days.

For larger DRZ outer radii, the penetration depth needs to be longer, so

that the effects of depressurizing the borehole reach the outer radius of the

DRZ . If the outer radius of the DRZ had been 3.0 m, instead of 1.0 m as in

Figure 8, then much less of the region would have been depressurized. This

is shown in Figure 10, where the outer radius of the DRZ is 3.0 m and the

penetration depth is 1.0 m. Comparing Figures 8 and 10, in Figure 10 with

the larger DRZ outer radius, pressure changes have not yet significantly

reached the outer boundaries of the DRZ. However, for longer times, as shown

in Figure 11 for a penetration depth of 3.0 m, much of the DRZ is affected.
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Figure 7. Dimensionless pressure contours of (Pf-Pa)/(Pm-Pa) at a penetration

depth of D u 0.2 m, for a borehole with DRZ inner and outer radii of
P

a - 0.05 m and b - 1.0 m, respectively, and a borehole length of L =

3.0 m.
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Figure 8. Dimensionless pressure contours of (Pf-Pa)/(P@-Pa) at a penetration

depth of D = 1.0 m, for a borehole with DRZ inner and outer radii of
P

a = 0.05 m and b E 1.0 m, respectively, and a borehole length of L =

3.0 m.

62



1 I 1 I I I , I ,

0.0 0.2 0.4 0.6 0.8 1.0

Radial Distance (m)

TRlf-6119-5-O

Figure 9. Dimensionless pressure contours of (Pf-Pa)/(Pm-Pa) at a penetration

depth of D = 3.0 m, for a borehole with DRZ inner and outer radii of
P

a = 0.05 m and b = 1.0 m, respectively, and a borehole length of L =

3.0 m.
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Figure 10. Dimensionless pressure contours of (Pf-Pa)/(Pm-Pa) at a

penetration depth of D = 1.0 m, for a borehole with DRZ inner and
P

outer radii of a = 0.05 and 3.0 m, respectively, and a borehole

length of L = 3.0 m.
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Dimensionless pressure contours of (Pf-Pa)/(Pm-Pa) at a

penetration depth of D = 3.0 m, for a borehole with DRZ inner and
P

outer radii of a = 0.05 m and b = 3.0 m, respectively, and a

borehole length of L = 3.0 m.
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8.2 Sample Calculations of Borehole Brine inflow Rates

The flow rate into the borehole is of greater importance than the fluid

pressure in the DRZ. This rate is a readily measured quantity that can be

used to estimate physical properties of the DRZ. As given in Table 2, in

Figures 12, 13, and 14, brine flow rates into a borehole are shown for rock

permeabilities of 10-20, 10-21, and 10-22 M2 respectively., Figures 16, 17,

and 18 are for the same permeabilities, respectively, but for a one-year

hiatus between mining the drift and drilling the borehole. The curves in

these figures are calculated from Equation (6-5). To differentiate the

curves, filled and unfilled symbols are used to indicate two- anclone-

dimensional results, respectively. The notation on the figures c,f2D and lD

corresponds to two-dimensional and one-dimensional, respectively. The same

symbol shape is used for results with the same DRZ outer radius. In

particular, circles, squares, and triangles are used for DRZ outer radii of

infinity, 2 m, and 1 m, respectively. To accommodate the wide range of flow

rates , the y-axis scales in the figures are different for each figure.

Instead of analyzing individually Figures 12 to 18, to gain an

understanding of the different model predictions over the range of parameters

selected, it is better to discuss all four figures simultaneously. This can

be accomplished by making the following seven observations given in Sections

8.2.1 to 8.2.7.

8.2.1. Flow Rateast + O

At time just greater than zero, the fluid pressure at the borehole

surface, r - a, is Pa, and is Pm for r > a. This discontinuity results in an

infinite flow rate at time just greater than zero. To avoid this

mathematical problem, the flow rates are plotted beginning with short, but

nonzero times.
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Figure 12. Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 10-20 m2.
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Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 10-21 m2.
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Figure 14. Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 10-22 m2.
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Figure 15. Percentage of flow rate to borehole for the two-dimensional model.

The solid, long dash, and short dash lines are for rock

’20 m2, 10-21 m2, -22 m:?permeabilities of k E 10 and 10

respectively. The asymptote for long times is given by Equation

(6-15), and is independent of k.
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Figure 16. Brine inflow rates calculated for one- and two-dimensional models

-20 M2for a rock permeability of k = 10 . Time period between

mining the drift and drilling the borehole = r = 1 year.
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Figure 17. Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 10-21 m2. Time period between

mining the drift and drilling the borehole = r = 1 year.
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Figure 18. Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k= 10-22 m2. Time period between

mining the drift and drilling the borehole E r - 1 year.

73



8.2.2. Model with Maximum Flow Rate

For the same permeability (i.e., for the same figure) and for the same

DRZ outer radius, the one-dimensional solutions always have the greater flow

rate. This is because flow to the drift is neglected in the one-dimensional

models . Furthermore, the one-dimensional infinite-radius model always has a

flow rate greater than that for the one-dimensional finite-radius model

because the former has no barrier to flow at any radial distance from the

borehole.

8.2.3. Flow Rate for Same Dimensionality but Varying DRZ Outer Raciius

For the same dimensionality, the flow rates for the infinite-radius and

finite-radius models are comparable when the penetration depth is less than

the borehole length and less than the distance given by the difference in

outer and inner radii of the DRZ. In this case, the finite boundary has not

yet had the opportunity to affect the flow. This may be achieved by

increasing the outer radius of the DRZ, and/or decreasing the permeability.

Notice in Figures 12 and 13 that as the outer radius of the DRZ increases

the finite-radius model flow rates are closer to the flow rates for the

infinite-radius models. In Figure 14, with the lowest permeability, the

finite-radius solutions with b = 2 m are essentially indistinguishable from

solutions with the same dimensionality, but with b + ~.

8.2.4. Effects of Penetration Depth Relative to Radial Distance

As mentioned in Section 8.2.3, the penetration depth can also be

decreased by decreasing the permeability. Because penetration depth varies

as the square root of the permeability, the sequence of Figures 12, 13, and

14 have penetrations depths that decrease by factors of 101/2 = 3.16 for the

same time given on the x-axis of the figures. For example, at 1.000days, the

penetration depths in Figures 12, 13, and 14 are 17.2, 5.44, and 1.72 m,

respectively. Thus , the penetration depths in Figures 12 and 13 at 1000 days

are greater than the outer radius minus the inner radius of the DRZ (i.e. , D
P

>b-a= 0.95 mforb=l.Om, and Dp>b-a=l.95mfor b-2.Om).

Because the penetration depths are greater than the difference in radii, for
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the same dimensionality the effects of a finite-radius DRZ will reduce the

flow rate below that for an infinite-radius DRZ. Therefore, in Figures 12

and 13, for the same dimensionality the finite-radius model flow rates are

significantly less than those of the infinite-radius model flow rates.

However, in Figure 14 at 1000 days, for the same dimensionality the infinite-

radius solutions are virtually indistinguishable from the finite-radius

solutions with b = 2.0 m. In this case, the difference in DRZ radii of 1.95

m is greater than the penetration depth of 1.72 m, so the effect of a finite-

radius DRZ has not yet affected the flow.

8.2.5. Conditional Test for Using One-Dimensional Models

The conditional test given by Equation (6-9) requires [Dp/L]* S 0.0886

for the two-dimensional brine inflow rate to be within 5% of that for the

one-dimensional model. From Equation (6-9), for permeabilities of k = 10-20,

10-21 , and 10-22 M2 , the times for which this conditional test are satisfied

are 0.239, 2.39, and 23.9 days, respectively. However, if agreement between

one- and two-dimensional models need only be within 50%, then the conditional

test in Equation (6-9) is satisfied for times less than 23.9, 239, and 2390

days for the same set of permeabilities, respectively. This analysis agrees

with the inflow rates shown in Figures 12 to 14. In particular, note from

Figure 14 that the two-dimensional brine inflow rate is always within 50% of

the one-dimensional brine inflow rate. This is expected because the time

period shown is less than 2390 days, as required by the conditional test

given by Equation (6-9).

8.2.6. Percentage of Flow Ratetothe Borehole

Because the two-dimensional model includes flow to the boreholeand to

the drift, it is of interest to determine F%, the percentage of the flow rate

to the borehole. As given by Equation (6-14), this percentage varies with

time, permeability, and DRZ outer radius. A plot of F% for permeabilities of

k = 10-20, 10-21, -22 M2and 10 is given in Figure 15. As shown in Figure 15,

the results for long times are insensitive to the permeability and time.

This agrees with Equation (6-15), in which the only parameters that determine

the long-time behavior of F% are a, b, and L. To use Equation (6-15), Al

and ql must be calculated. For example, for b = 1.0 m, Al can be estimated
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from Figure 6, or from using the technique in Appendix A to obtain a more
.

-Laccurate value of Al = 0.930 m . In the sample calculations L - 3.0 m, and

thus according to Equation (2-26), VI = 0.524 m-l. Substituting these values

into Equation (6-15) provides the long-time solution for F% - 75.9% as given

in Figure 15. Thus, for b - 1.0 m, approximately 24% of the flow rate is to

the drift for long times.

A physical explanation for the results shown in Figure 15 can be

obtained

fluid to

However,

radius.

borehole

by noting that the surface area of the drift floor available for

escape increases quadratically with an increasing DRZ outer radius.

the surface area of the borehole is independent of the DRZ outer

Therefore, as shown in Figure 15, the percentage of flow to the

decreases dramatically as the DRZ outer radius increases. Notice

from Figure 15 that even for a DRZ outer radius of 2.0 m, which is less than

the borehole length of 3.0 m, the dominant flow path is to the drift and not

to the borehole.

8.2.7. Effect of Drilling BoreholeOne Year After Mining Drift

To demonstrate the effect of prior depressurization, in Figures 16 to 18

the brine inflow rates are shown for the condition that the time between

mining the drift and drilling the borehole is one year. For convenience, in

these calculations H = 3.0 m. Prior depressurization is not included in the

one-dimensional solutions, and therefore the one-dimensional inflow rates in

Figures 16 to 18 are identical to those in Figures 12 to 14. However, for

the two-dimensional models, in making the same comparisons among,Figures 12

to 14 and 16 to 18, respectively, there are significant decreases in the

inflow rates if prior depressurization is included. This is due to the

reduction in pressure gradient and in the available fluid caused by fluid

previously escaping into the drift. In comparing Figures 16 to 18, this

effect decreases as the permeability decreases because less fluid has had the

opportunity to escape for the same time period of one year.
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9.0 CONCLUSIONS

This work presented a detailed derivation of the solutions to the

Diffusion Equation in cylindrical coordinates that are applicable to modeling

flow in a DRZ. The solutions apply to DRZS of arbitrary radial extent from a

borehole drilled from a drift, and are useful for determining fluid pressures

and borehole fluid inflow rates. The solution domain is restricted to

constant homogeneous rock and fluid properties in the DRZ and pressures in

the borehole and at the surface of the drift that are maintained constant at

ambient conditions. These solutions remove the modeling constraints of one-

dimensional radial flow for a DRZ of infinite extent, and thus provide a

basis for assessing the significance of neglecting flow to the drift, both

before and after drilling the borehole, and for assessing the effects of a

finite DRZ. The solutions are also useful for providing benchmark test cases

for more detailed numerical calculations.

Based on the solutions presented, an exact quantitative criterion was

developed for assessing the importance of two-dimensional effects on the

borehole brine inflow rate. This criterion provides a conditional test to

determine for a specified tolerance on the agreement between the one- and

two-dimensional solutions, up to what time two-dimensional effects are not

important. For this initial period, the one-dimensional model may be used.

For convenience, Equation (6-9) and the plot given in Figure 5 can be used to

determine the maximum time that the two- and one-dimensional solutions will

be comparable. This analysis assumes that the initial pressure is uniform.

If the initial pressure is not uniform, such as in the case that there was

much time between mining the drift and drilling the borehole, the two-

dimensional model is appropriate because it includes depth-dependent

variations. In this case, for long times, the ratio of the flow rate to the

borehole and to the drift may be determined from Equation (6-15) and Figure

6.

Although, as given in Table 1, the two-dimensional finite-radius model

presented in this work removes three of the limitations of the one-

dimensional infinite-radius model, the extent of the DRZ is not determined

from the model and must be specified independently. In addition, the model

neglects flow up from below the DRZ.
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Further work is needed to extend the two-dimensional model to include

flow up from below the DRZ. For two-dimensional modeling to be practical, a

direct method for estimating physical properties from fluid inflow rates is

also needed. Such a method has been developed for the one-dimensional

infinite-radius model (Nowak and McTigue, 1987; Nowak et al. , 1988) and

should be developed for two-dimensional models.
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APPENDIX A: DETERMINING EIGENVALUES IN THE RADIAL DIRECTION

A-1



A-2



Appendix A: Determining Eigenvalues in the Radial Direction

The eigenvalues Ai are determined from Equation (2-20) and are

calculated numerically. In this Appendix, a simple but highly efficient

Newton iteration method is presented for determining the eigenvalues.

To begin the iteration, a first guess for the eigenvalues may be

obtained by using asymptotic expansions for the Bessel functions for large

values of their arguments given by (Abramowitz and Stegun, 1970, p. 364, Eqs.

9.2.1 and 9.2.2)

‘n(x)+~cos[x-~-:l as ‘_’m (A-1)

‘n(x) +~sin[x-~-~l as ‘+m
(A-2)

Using Equations (A-1) and (A-2), Equation (2-20) for the first guess of

*
eigenvalue i, Ai, reduces to

O=cOs[+ -~lsin[:a -:l-cOs[~a -:lsinFf-~l ~
(A-3)

Solving Equation (A-3) for A: results in

A;= 7r(2i-1)
b-a

i= 1,2,3, ... (A-4)

With this initial guess, the next iterate for ~i is given by

A-3



(A-5)

Using Equations (2-16), (2-17), and the following identities (Abramowitz and

Stegun, 1970, p. 361, Eq. 9.1.30),

dJ1(x) Jl(x)

dx
= Jo(x) - ~

dY1(x) Yl(x)

dx
= Ye(x) - —

x

(A-7)

(A-8)

we have that

(A-9)

[ 1
+ ~ Jo(Aa)yl(Ab) -Yo(Aa)J1(Ab) .

The next iterate can now be determined by substituting Equations (A-6) and

(A-9) into Equation (A-5), and repeatedly using Equation (A-5) to converge to

the eigenvalue.
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Abramowitz, M. , and I. Stegun, eds. 1970. Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. 8th printing.

New York, NY: Dover Publications.
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APPENDIX B: EVALUATING INTEGRAL FOR AN INFINITE RADIAL DOMAIN

B-1



B-2



Appendix B: Evaluating Integral for an Infinite Radial Domain

Approximations of the integral obtained for infinite-domain problems

have been reported (Jaeger, 1942; Jaeger and Clarke, 1942). A convenient

method developed by D.F. McTigue (Sandia National Laboratories, Department

1513) to evaluate the first part of the integrals in Equation (6-5) may be

derived by substituting ~ = a~ so that

I

2
-CCA t

I(O,C) -
e

dl

[
A J~(Aa) + Y~(Aa)

1
0

becomes

I

e-a~2t/a2
I(O,C) = d~

P[J:(P) + Y:(LV
1

(B-1)

as.c+O. (B-2)

o
As/?+O, the asymptotic (Abramowitz and Stegun, 1970, p. 360, Eqs. 9.1.12

and 9.1.13)

Jo(P)+I-:+...

[[11
Yo(13)+ ? ~n q Jo(@) + ...

n

as~+O

as~+O

(B-3)

(B-4)

can be used to simplify the denominator of the integrand in Equation (B-2) so

that

B-3



Integrating Equation (B-5) by parts results in

2
I(O,C) = ~

2
-at t

-e
+ higher order terms

[1
cae7

in ~

as ta + O .

The second part of the infinite-domain integral is given by

co

C>o,

(B-5)

(B-6)

(B-7)

which may be evaluated numerically because there are no singularities in the

integrand for t > 0.
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